A Discussion of Optimization Strategies
and Performance for Unstructured
Computations in Parallel HPC Platforms

DOD HPC UGC 2001

June 21, 2001

D. Shires, R. Mohan®, and A. Mark

Computational and Information Sciences Directorat
High Performance Computing Division

Outline

Introduction and Motivation
Computational Problem

Parallel Solution Approaches

— MPI
e Optimizations
— HPF
o Optimizations
Performance
— HPF vs. MPI
— MPI Cross-Platform

Concluding Remarks

Motivation

e |nvestigate and explore various approaches to
parallelism on DOD HPC systems

— Portable languages and libraries
— Data parallelism, message passing

« Perform studies in the context of a real Army (and

DOD, and industry, etc.) problem

— Promote composite material insertion through risk
reduction

— Reduce risk by way of process simulations

— Use novel solution approaches and parallel formulation
for large-scale simulations

— Assist in fielding Future Combat Systems (FCS

Applications

7
N
Q
=
O
>
o
=
S
o
S
O

Computational Problem

Composite manufacturing prediction of
— Resin impregnation behavior
— Track pressure field and flow fronts

Addresses various liguid composite molding processes
— RTM, VARTM, Low pressure RTM

Eulerian fixed-meshes used

Unstructured meshes represent geometrically complex
models

— Represent difficult challenges to getting good parallel performance

o Software developments performed under CHSSI
IMT-4

 Primary deliverable is the MPl-based Composite
Manufacturing Process Simulation Environment
(COMPOSE)

o Consists of a suite of parallel/serial pre- and post-
processing tools

* New modules are continually under development
to fill RDEC and industry requirements

HPF and MPI
Pros and Cons

HPF « MP]

— Higher conceptual level — Low level, “assembly

— Easy to use directives language” parallelism
and data distribution — Requires data

— A language; requires decomposition

robust compilers — Use well-tested native

— Compiler controlled compilers; built on a

communication difficult library
to optimize « Good optimization and

— Some details are performance analysi
proprietary-obscured — Tedious attention to
detail can give gooc

MPI| Parallel Software
Developments

Provides 2-D and 3-D solutions
— Triangular, quadrilateral, and tetrahedral elements

Preprocessors written in C++
— conpose_convert
e Converts from other formats (NASTRAN) to COMPOSE
conpose_check
» Checks mesh to ensure mesh connectivity
conpose_optim ze
e Optimizes mesh structure for cache performance
conpose partition

« Partitions mesh for multiprocessor execution

MPI| Parallel Software
Developments

* Pre- and post-processing developments are
ongoing in Java
— Provides cross-platform support
— Provides better tech transfer to customer base

MPI| Parallel Software
Developments

Core solver written in Fortran 90

— Slightly more friendly development environment over FORTRAN 77
* Heap memory
» Abstract data types
« Assumed shape arrays with intrinsics

Message passing characteristics

— Attempted to remove all explicit barrier calls through control flow
analysis
— Attempted to hide communication behind computation

» Tight loop structures of solver and update sections limited this
somewhat

— Messages consist of non-blocking sends, blocking receives, and
global reduction operations

MPI1 Optimizations

« MPI is SPMD parallelism
— Sequential optimization provides parallel optimization

e Data optimizations for cache

— Poorly numbered meshes from CAD packages do little
for cache affinity

MPI1 Optimizations

— Implemented a technique based on Reverse Cuthill-
McKee

Distribution of non-zero entries in a finite element sparse matrix

— Effects
 10% reduction of wall clock time on T3E-1200
« Before and after not tested on IBM Nighthawk Power3

MPI1 Optimizations

« Large cache (8 MB) SGI Origin 3800 showed no wall clock time
change

e Hardware counters did show some improvements

Statistic Original Renumbered

L1 Cache Line [5.42 5.67
Reuse

L2 Cache Line [4548.95 9530.24
Reuse

Memory 1.21 0.43
Bandwidth
Used (MB/s)

MPI1 Optimizations

« Compiler and source code optimizations
— Careful profiling can reveal problems

— One update routine contained a division operation

inside a IOOp #<swps> 2 flops (7%of peak)

(madds count as 2)
#<swps> 0 nmdds (0% of peak)
#<swps> 3 nmemrefs (21% of peak)
#<swps> 3 integer ops (10% of peak)
#<swps> 8 instructions (14% of peak)

— Used multiply by reciprocal, loop invariant code motion

to help pipeliner and instruction scheduler

#<swps> 8 fl ops (30% of peak)
(madds count
#<swps> 4 nmdds (30% of
#<swps> 13 nemrefs (100% of
#<swps> 6 integer ops (23% of
#<swps> 23 instructions (44% of

MPI1 Optimizations

Final optimization dealt with instruction scheduling
— Reverse procedure integration

Operates as an inverse to inlining

Contiguous code segments internal to a subroutine are moved to a
separate subroutine

Performance analysis and investigation of assembly code revealed
complicated instruction scheduling in a critical region

Matrix-vector multiply inside a larger loop

Compiler generated prefetching instructions for outer loop of mat-vec
multiply

This technique allows some control (along with compiler options) for
phase ordering type problems

— Prefetching, out of order execution, software pipelining
Results:

— 15% reduction in time for SGI O3K

— No change on T3E-1200

— Not tested on IBM Nighthawk Power 3

HPF Parallel Software
Developments

Data parallel model

New, more robust Portland Group 3.2 compiler came on-
line
Allows for asymmetric block distribution of data

Critical for good performance on unstructured grids

Overcomes version 3.0 restrictions requiring conformable arrays

We encountered problems with interactions between intermediate
code and native compilers

Not enough time to get everything working
Past optimizations covered in previous paper/presentation

Currently testing new compiler and software on SGI Origin
3800 system

Performance

« HPC platforms used include
— SGI Origin 3800

« Scalable currently limited to 128 processor system

— IBM Nighthawk 2 SMP with Power3 nodes
« Scalability tests up to 512 processors

— Cray T3E-1200
« Scalability tests up to 1024 processors

Performance of HPF versus MPI

e Currently limited to Cray T3E system
— Timing and compiler constraints
— Past optimization of PGHPF compilers for that system

« Comparable compiler flags

— PGHPF —f ast option, invokes native compiler with
—Qunrol | —-Opi peline2 —0scal ar 3 flags

— MPI Fortran 90 compiled with —C3, pi pel | ne3 flags
— Times are exclusive of I/O

Performance of HPF versus MPI

 MPI outperformed HPF in every trial
— Factors ranged from 2.7 to 4.5 times faster

« HPF meshes were not renumbered using RCM
— May reduce time by up to 10% as seen with MPI runs

29,171 nodes 3 . 45,547 nodes
58,187 slamants = . 89,945 elements
Cray T3E-1200 = 10000 Cray T3E-1200
8000}
8000} 3
4000

2000

Exacutlon

| | | |
60 80 100 129
Number of processors Number of procassors

MPI| Cross-Platform Performance

e Jobs submitted in standard production queues
— IBM system in pioneer mode
« At or near full capacity
e 5 large-scale meshes tested, 2 presented
— Mesh 1 - 45,547 nodes, 89,945 elements
— Mesh 2 — 405,327 nodes, 809,505 elements

e Overall timings also dependent on processing
conditions, which were different

MPI| Cross-Platform Performance

- - € - IBMNH-25MP ; - - €~ -- |IBMNH-2 5MP
——B—— 5aAl Crigin 3800 C —~B8—— 8al Crigin 3800
Cray T3E-1200 = Cray T3E-1200

IS
I}
=}
=}

Execution time in seconds
Execution time in seconds

16 3z 64 128 268 512 32 54 124
Nurmber processore Nurmber precesscrs

Performance starts to degrade as code becomes
communication bound

Good performance up to 64 and 128 processors

— 1 processor 2 week run can complete in about 3.5 hours using 64
PE

T3E requires roughly double the CPUs to get comparab
performance

Concluding Remarks

Parallel computing and CHSSI support have
enabled solutions to large-scale manufacturing
problems

— Applications to ground venhicles, air structures, etc.

HPF and MPI provide valid solution approaches
— MPI is more efficient and portable
— HPF continues to mature, but not fast enough

Careful performance analysis and profiling can
reveal many optimization opportunities
— Execution time on the SGI 3800 reduced by about <

